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It is shown that an attracting set containing a denumerable set of periodic 

motions may exist in the presence of two interacting self - oscillating sys- 

tems . 

Presence of synchronisation and beat modes under the action of external periodic 
perturbation on a self- oscillating system was established in the works of Van der Pol , 

Andronov , and A. A. Vitte. In nonresonant cases the problem of existence of beat mo- 

des can be reduced to that of existence of stable invariant tori. It was shown by Krylov 

and Bogoliubov [l] that with a suitable selection of the secant, the existence of an 
invariant torus is implied by the existence of an invariant curve in the mapping of a 
ring into a ring. Further investigation of problems of existence and smoothness of pe - 
riodic surfaces are treated in the works of Bogoliubov , Iu. A. Mitropolskii , Levinson, 

Diliberto , Heil , and others. 

1. It can happen that an invariant curve does not exist for mapping a ring into a 

ring, and that only a closed invariant set of a complex nature which contains a denu- 
merable set of periodic motions, a continuum of trajectories that are Poisson stable, 
etc. is available. Below we present a mathematical description of such situation, for- 

mulated in the form of the principle of ring (for simplicity the exposition here is in a 
less general form than in [Z] ) . 

The principle of ring. Letthe mapping T 

2 = f (5, 0), 3 = 0 + g, (3, 0) = g (5, 0) (mod 23~) 
x = (x1, . . .) 5k) 

where f and g, are C'- smooth functions 2 TE- periodic with respect to 8, maps 
ring K : 11 x 11 < rO, 0 < 8 < 2n into itself and satisfies the following conditions: 

1”. II f~ II < q < 1 for all (2, 0) ; 
2”. The condition of phase dilatation is satisfied, i.e. there exist a p > 1 and a 

segment [a, b], 0 ( a ( b \c 2n, such that max, I gedlj <p-l for any 8 E 
[a, bl. Moreover 1 g (2, b) 

3”. II fe II II gx II < (P 
- g (x, a) 1 > 231 (n + 11, n > 2 for any 34 II s&,; 

- 1) (1 - q) for all (5, 0) E K. 

There exists then in ring K a closed set 2 consisting of trajectories of T - map- 
ping which can be set in a one-to-one and bicontinuous correspondence with the set of 
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all possible sequencies that consist of n symbols and are infinite in both directions. 

In other words, mapping T onto 2 is topologically associated with the shift of the 

Bernoulli topological scheme of n symbols (see Fig. 1, where the shaded region re- 
presents image of K in the T - mapping). 

Condition 2” means that the length of images of circles z = z0 is increased not 

less than (n + 1) times, which results in exponential scatter of points on the phase in 
intervals where I g, 1 > 1 (see Fig. 1). The closeness of condition 2” to the heuristic 

stochasticity criterion of Chirikov indicated by him for area retaining mapping should 
be noted in this connection(+). 

Such cases were, evidently, not encountered in problems in which perturbations of 
input equations were fairly small. To indicate a system in which the principle of ring 
is realized it is necessary for either the interaction bond of the self-oscillating systems 

(or the perturbation of a self-oscillating system) to be fairly considerable, or for the de- 
gree of coarseness (i. e. the distance to the bifurcation boundary) of one of the systems 

to be small. The first course is very complicated and necessitates the use of a computer 
in specific cases. The second course permits the establishment of conditions in which 

the principle of ring can be applied. The result established in the present work is notably 
such that in the interaction of two self-oscillating systems, one of which has a limit cy- 

cle which passes near the equilibrium state of the saddle type (that corresponds to the 
self-oscillation mode), the image of some secant into itself can satisfy the conditions 
of the principle of ring. The complex structure of trajectories for periodically perturbed 
two-dimensional self-oscillating systems was established in [2] with the use of the prin- 
ciple of ring. Other mechanics of formation of attracting sets of complex nature are 

indicated in [3 , 41. 

“) Chirikov, B. V., Investigation in the theory of nonlinear resonance and stocha- 

sticity . Preprint Ins. of Nuclear Phys. SO Akad. Nauk SSSR, 267, Novosibirsk, 1969. 
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2 . Let us consider the system of differential equations 

u’ = u (u, e), 11 i% I[ < const, E Cz [--Es, EJ (2.1) 

where u is the m-vector and the right-hand sides of the system are C4-smooth vet - 
tor functions of variables, and are es -smooth with respect to e. We assume that sys- 
tem (2.1) has an equilibrium state 0, which is a simple saddle for which the roots of 

the characteristic equation are 3L1 (e), . . i, h,_, (e), y (e) and Rdt(~)c:O, y (8) 
> 0. 

We assume that when e = 0 the following conditions are satisfied: 

1) there exists trajectory I’s which is doubly asymptotic to the saddle 0,; 
2 ) the saddle quantity is negative, i. e. 

maxi {He& (0)) + y (0) c 0 (2.2) 

If for E > 0 the loop “collapses inwards” , then, according to ES, 61 , system 

(2.1) has a stable limit cycle re_ The degree of coarseness (i. e. the distance to the bi- 
furcation surface which corresponds to the separatrix loop) of system (2.1) is evidently 
of order e. 

In case 1) system (2.1) is subjected to a small periodic per~rbation of order 

j.k: U’ = U (u, e) + pLul (t, U, E, p), while in case 2) system (2.1) interacts 
with another self-oscillating system, i. e. 

26’ = u (u, e) 4 ~ p (u, % p) (2.3) 

21’ = I/’ (n) + PC! (u, Q, pJL) (2.4) 

11 z 1) < const, 11 VII < const, r E [--~0, e,,J, p E [-_IL~, yOJ 

where v is an n -vector and the right-hand sides of system (2.3), (2.4) are C4 

smooth vector functions of variables and parameters E and p. We shall consider case 
2 ) , since the analysis of case 1) is analogous. 

We assume that system (2.4) has a periodic motion ri : v = v (e), 8 = ot, w 

>0 when y=O, which corresponds to a coarse limit cycle whose multiplicators 

are no~ega~ve. In a fairly small neighborhood I’1 with p = 0 system (2.4) can , 
according to the Floquet - Liapunov theory, be reduced by the Ca -smooth substitution 

of variables v + (I”, 0) to the form 

7 = Ar + B (f, 01, 9’ = w + c (r, 0) 

where r is the (n - I)-vector , B and C are 2n -periodic with respect to 8 and 
es-smooth and the eigenvales al, ., 
0, i = 1, . * . .* n - 1. 

., a,_l of matrix A are such that Re at < 

The assumptions made about systems (2.3) and (2.4) imply that when p, = 0, 
that system for /A = 0 and a > 0 has a saddle periodic motion rrr ss 0, X rs, 
whose stable manifold tv,” is (m f n - ‘I) -dimensional, and the unstable w, is two- 
dimensional and,also, a two-dimensional invariant torus T, E rz x l?i . The latter 
passes for small E near the periodic motion rl% and, when E + 0 merges with the 
loop of the unstable manifold WC equal to r,, X lY1 (see Etg, 2, where ~1 = 0 and 

8 > 0 and the solid lines show the traces of intersection of torus T, and manifolds 
We+andWe-with the secant 0 = coast ). 
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Let us assume that the saddle quantity of periodic motion is negative, i. e. 

max Pe5 (01, Re ai} + y (0) < o (2.5) 
Note that in case 1) condition (2.5) is automatically satisfied when inequalities 

(2.2) are satisfied. 

The analysis of behavior of trajectories of system (2.3), (2.4) in some small 

neighborhood of the torus T, is conveniently reduced to that of mapping the secant into 

itself on trajectories of system (2.3)) (2.4). The secant is selected in the form of di - 

rect product of some secant to I’s (and to I’s ) in the small neighborhood rl. 

3 . By a C? -smooth nondegenerate substitution of variables and time we reduce 

system (2.3). (2.4) in the neighborhood rlc to the form 

where z is the (m + n - 2) -vector; y and 8 are scalars, the right-hand sides of 
the system belong to class Ca in region G = B, x l-81, a,1 x [---PI, piI (0 < a, 
< e,, 0 < p1 < p. and B, is the 6 -neighborhood of I?,,); F and H are 2n- 

periodic with respect to 8 and vanish when z = y = 0; eigenvalues of the (m + n 

- 2) x (m + n - 2) -matrix A (8, p) are close to A1 (0), . . ., ?L,,,_~ (0) and 

a,, . . ., a,, s respectively, and the quantity y (a, p) is close to y (0). 

N o t e 1. The system can be obtained in form (3.1) by straightening the smooth 
invariant manifolds W,+and W, of periodic motion rrc which by the Theorems 3 - 6 in 
[7] exist, by the substitution of time, and in accordance with the Floquet - Liapunov 
theory. It can also be shown that when p = 0, the combined substitution of (5, y, 6) 

for (r~ v) , Y as a function of u and .v is independent of V, and 6 is independent ofu. 
For fairly small 6 in 0, we have the following estimates : 

II Fx II + II J’u II + II Hx II + II 6 II \( M, II F II + II H II < m (3.2) 
II Fe II + II He II < W II Ho II + II H,i II < M’ 

where M, M , and N are constants that are independent of 6. 

We seek transformation T in the form of superposition of mapping Tsconstructed 
by trajectories of system (2.3). (2.4) which pass in the neighborhood of rll, and map- 
ping T, by trajectories which pass in the neighborhood of r. x rl. 

Mapping To. In conformity with assumptions the intersection ofWr with the 

6 neighborhood of TIC has for p = e = 0 two connectedness components: IV- that 

belongs to cylinder II: = 0 and I%‘- + that belongs to cylinder y = 0. Let us fix the 
circle p-: z = 0, y = d,, 0 < 0 < 2n on W--and consider the secant S,: y = 

&, /I z 11 < pl, O< 8 < 2n. We also fix the circle P+: z = x0, y = 0: 0 < 
8 < 2n on Mr-+and select an arbitrary transversal tow-+that intersects ss so that 

II x - 2’ 11 < po, ll y 1 < p. for points (z, y, 6) E So, For fairly small IL9 8, 
p. and p1 the secants 8, and So are, obviously, transversal to the trajectories of sys - 

tern (2.3), (2.4). 
Let 

5 = x (t, x0, Y,, e,), 8 = 8 (t, zo, yo, e,), Y = yoey(E*U)t (3.3) 
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be the solution of system (3.1) that at t = 0 passes through the point (50, ~0, 00) 

and lies in the 6 -neighborhood of riE. We fix Ai, maxi,j {Re Aj (0), Reai} < A1 

< 0 and ~1, ‘~1 > Y (0) > 0 such that hi + yi < Q (they exist by virtue of 

assumption (2.5). It can be shown that the estimate 

(3.4) 

holds for all reasonably small e and p . 
The following lemma is proved by the methods presented in [6 , 81, with the use 

of inequalities (3.2) and (3.4) and the generalized Gronuall inequality. 

Lemma 1. For any numbers a and fl such that a > 0, J,, < $ < 0 there 

exist such numbers & pz (0 < CLa < pi>, &a (0 < es < eJ, that in region (;_=B, 
X [-Es, ~1 X [--pa, ~~1, where B, is the 6 -neighborhood of r,, (0 < 6 < d,), 
estimates 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

where Ci and Ci’ are constants, hold for the solution of Eqs. (3.1). 

We select a,, aa, and pa so small that a and fl satisfy conditions 

O<a<y,, O<a< --@I +yl), h<B<h +?I (3.9) 

and, furthermore, C& < V8, M6, < min {1/8, Vg co}. 
These inequalities with allowance for (3.5) make it possible to obtain on the basis 

of the form of (3.1) the estimates 

/I II 9 < 2 (l/A (8, pL) (I+ lie) bhlf 

I 8-3 (t) 
at 

--cd <$w 1 
and the last of estimates (3.8) can now be written as 

(3.10) 

(3.11) 

The mapping T,: So + S, is obtained by substituting into (3.3) the transition 

time 

t,= - &ln% (3.12) 

from ,.‘$, to S,, which is determined by the condition 4 = yo,+@,P)t. We have 

(3.13) 
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c&=6 - ( &iTln-$ X0? Yo, 00, 8, p ) 
Inequalities (3.5) assume the form 

From this follows the statement: there exists for any pI >. 0 such b > 0 that 
for all reasonably small &2 and j..$ the mapping To : So .-+ S, is determined in re - 

gion GO = {@, y, 0) E So, 0 q J< b). 

M appi ng T,. By virtue of assumptions made above the circle P is transformed 
during a finite time into circle z = x0*, y = 0, 0 ( 8 < 2n , on the trajectories 
of system (2.3), (2.4) when ~1 = 8 
i.e. we set x0 = zoo. 

= 0, We take that circle as the circle P , 
It follows from general theorems 

that for all reasonably small 8. and /.r 

there exists a smooth nondegenerate 
image of the neighborhood of one of 

these circles onto some neighborhood 
of the other, i. e. for any p. > 0 there 
exists a pi > 0 such that a smooth non- 
degenerate mapping T, : S, -+ So 
exists. 

When p = E = 0 the system 
(2.3) s (2.4) splits into systems (2.3) 
and (2.4), hence, owing to the initial 
condition q = 0 the motion in system 

Fig. 3 (2.4) occurs on the limit cycle l-‘, : u 
= a (fl), 8’ = co, and consequently, 

0, f 3, + oz,. This and the nondegeneracy and smoothness of the substitution of 

(x, y, 8) for (u, V) with respect to variables and parameters imply that for p = ke 
mapping T, can be defined by 

50 = xo”+ @‘l (Xl, %l 8) + P2’ (Xl, 81, e) (3.15) 

Y, = A, (~1, ‘L 8) ~1 + eA, (xr, 81, e) 

00 = P, + e% + R,’ ( XI? %, e) XI + s&a’ (SX, @,, e)) (mod 2n) 

where the right - hand sides belong to class Ca and Pi, Ai and Qi are %c - periodic 

with respect to 0,, i = 1, 2, By virtue of Note 2, A2 = R, (xl, e) + kR, (xl, 0,, 
e), and, if the case in which conditions of creation are satisfied, R, (xl, E) > 0. 

Let us assume that A2 (0, t$, 0) > 0 (if As vanishes it means that system(2,3), has 

homocline curves [8, 93 if, however, A, < 0, all trajectories, except rl,,leave the 

neighborhood To x TX [2]. ) 
Stable and unstable manifolds of periodic motion rrc are shown in Fig. 3 for e> 0 

and A, > 0. 

4 . The mapping 2’ is obtained as the superposition of mappings T,and T1 by 

substituting (3.15) into (3.13) with the transition time t,,, determined by the equality 
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t,= - 5ie = Al h %, 4~ + & (21, 01, e) (4.1) 

Let us show that the mapping T has actually the same properties as the model mapping 

el=el+~~e+~ln~ (~~Ef~+wz~+cot~) 
I 

by proving the following lemma. 

Lemma 2. For any x, 1 ( x < 5 there exist such 83 and 6s that for all E, 

0 < E < e3 mapping T transforms ring K, : 11 xl If < ax, 0 ( 0, < 2n into 
itself, and the estimates 

(4-2) 
then hold . 

Proof. 1”. Estimate (3.14)) the second of formulas (3.15), and the inequality 

11 xl 11 < ex imply that 

It is obvious that for small E the expression in braces is smaller than unity, i. e. 

T(K,)C Ke. 
2”. We shall prove the last of estimates (4.2) by setting 11 <1 11 < EX and noting 

that 

Evidently 

I~l~l~~l-ll~lll~ll-~~~~~l~ll-ll~~ll~~ 
Using (4.1) and (4.2) we obtain 

here and below ai + 0 when E + 0. 
From (3.7) and the equality ~*~~(~‘k~~~~ = 4 follows that 

ll~ll~~~l~c~e~(&,~~)~~Iyoe,l = ctrdl~+j 

beI (09 h* 0) 
A,(‘& 81, 0) I 

+ a2 tej 

(4.3) 
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~~~~~antity &, and consequently, also, d1 is selected so small that Cs & < @/ 

1 ‘. 
It follows from (3.6) and (4.3) that 

( the quantity 6s is selected so small that N6, < y1 1. 

From (4.3) and (3.8) 

The above inequalities yield the last of estimates (4.2). 

3”. From (3.15) it is possible to derive 

Obviously 

(4.4) 

(4.5) 

From (4.1) and (3.6), (4.4) and (3. lo), and (4.4) and (3.11) we have, res- 

pectively , 

at, II B z < const 8-l + cz6 (e) 
1 

< const e-l $-a,(e), jl~III/~lI~Ca’e”‘h”Ln~conste-l+u,(e) 

I~l~~~li~ con.+& 

which yields the third of estimates (4.2). Then from (4.41, (3.101, (3.6) - (3.8) fol- 

lows 

a; II II 1 
azl 

< L1ec-l + Lgs-8 1~ + Lg3(<-:-1) + L4ec-aIvl (4.6) 

where L, are constants, and each term in (4.6) is the estimate or the corresponding 
term in the right - hand side of an inequality, similar to (4.5) in which 21 has been sub- 
stituted for C;r,. From (4.3) and (3.9) we obtain the first of estimates (4.2). 

Finally, from (4.3), (4. l), (3.10). and (3.6)-(3.8) follows that 

(4.7) 

From (4.7) and (3.9) we obtain the second of estimates (4.2). The lemma is proved. 
In Fig. 3 ring K, and its image in mapping T, for e > 0 are shown hatched. 

Theorem. Let us assume the existence of interval &= [a, b I, 0 < a < b < 2n 
such that for 8, E 1 
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Then for all reasonably small 8 the mapping T has in the ring K, an invariant 
set on which T is associated with the shift of the Bernoulli scheme of n I 1 symbols. 

Pro of . Let us check conditions of the ring principle. It follows from (4.2) and 
(4.7) that 1 ~,/iX$~ > 8/, for er E f and s furthermore, 11 &‘&zr 11 c 1.. We now 
set 

Then 

Using the inequalities 

the second of which follows from (3.7), and taking into account (3.6) and the inequa - 
llties (4.3)) (3. la), and (3.11) we obtain 

(the quantity 6s is selected so small that 

yr c,‘6s ( i/8 1. From this and (4.9) we 
obtain, 0; (b) - ?fx (a) 1 > 23~~. For the 
final proof of conditions of the ring principle 
it is sufficient to show that 

It follows from (4.2) and (3.9) that 
D,D,c$-” ‘~1 e-1 < iI8 when e is small. 

N o t e 2, Function AZ (0, 8, 0) defines 
the slit between the traces of manifolds W*+ 

zztl 8 and W,- on secant So. If the derivative of 
that function is small in comparison with the 

Fig. 4 function itself ( e, g. , A, = 3 + sino& 
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o&i), the mapping T has an invariant curve in K, . If there exists a segment on 
which the derivative is very large, for instance when A, is of the pulse kind (Fig. 4), 
we are faced with the ring principle, and Fig. 4 corresponds exactly to mapping T of 
the form shown in Fig. 1. Between these two limit cases lies the intermediate case 
associated with the Smiles horseshoe (see [9]. 
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